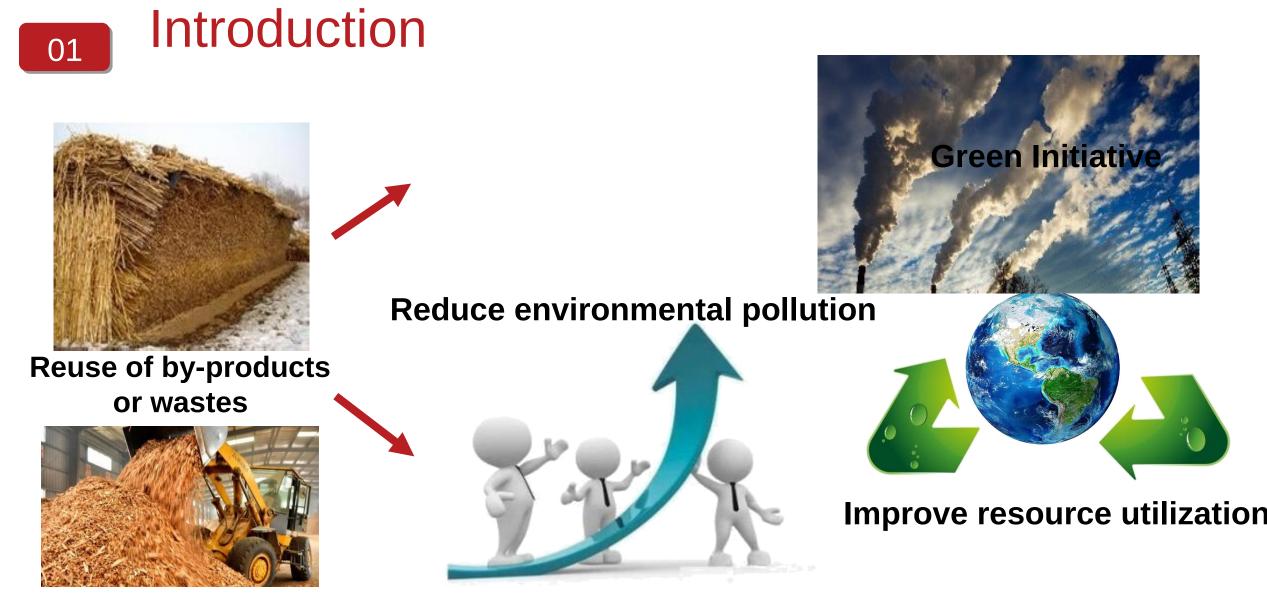
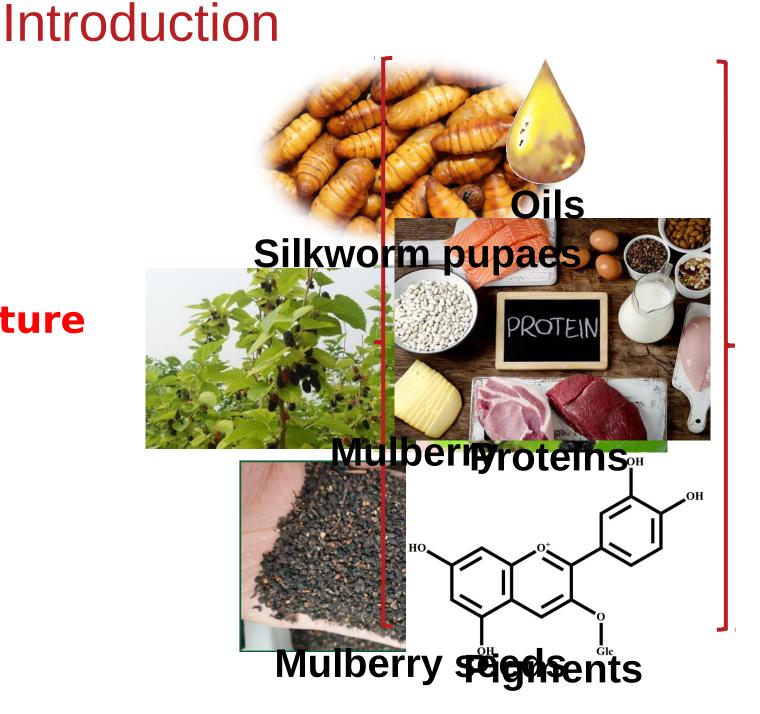

Effect of ultrasonic and microwave processing on physicochemical property of silkworm pupae protein and mulberry seed meal protein to improve protein availability


Wen-Jing Li, Hang-Xing Ding, Shuai You, Fu-An Wu, Jun Wang

Jiangsu University of Science and Technology, China



Produce high value-added products

sericulture

01

Large production High nutrition Multiple utilization

Edible fats

APA-Human milk fat-style products

Novel structure lipids enriched unsaturated fatty acids

Functional lipids

Oil

transesterificationPhenolic acid structured lipids

Health care products

[1]Zhao X Y, et al. European Journal of Lipid Science and Technology, 2015, 117(6): 879-889.

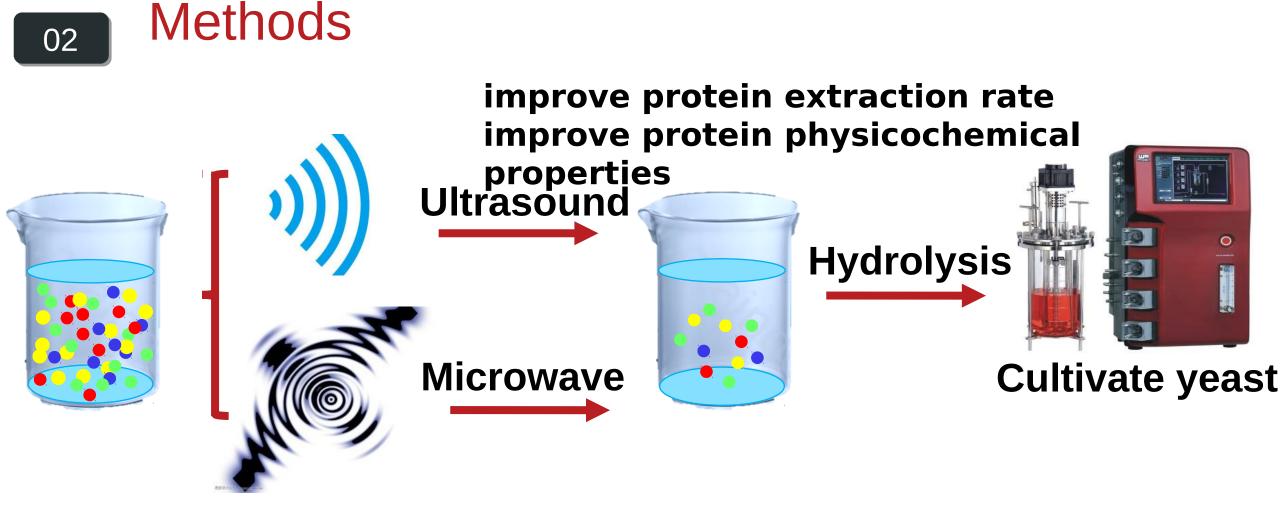
[2]Manzano-Agugliaro F, et al. Renewable and Sustainable Energy Reviews, 2012, 16(6): 3744-3753.

[3] Yang L I F. Journal of Food Lipids, 2006, 13(3): 277-285.

Introduction

Low protein solubility lead to low protein yield and affects the utilization of protein

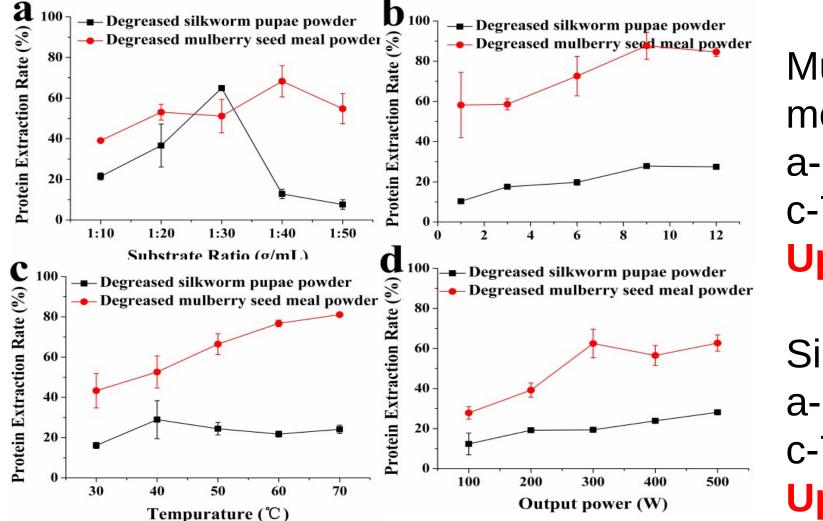
01



How to improve the protein property

and increase the protein yield?

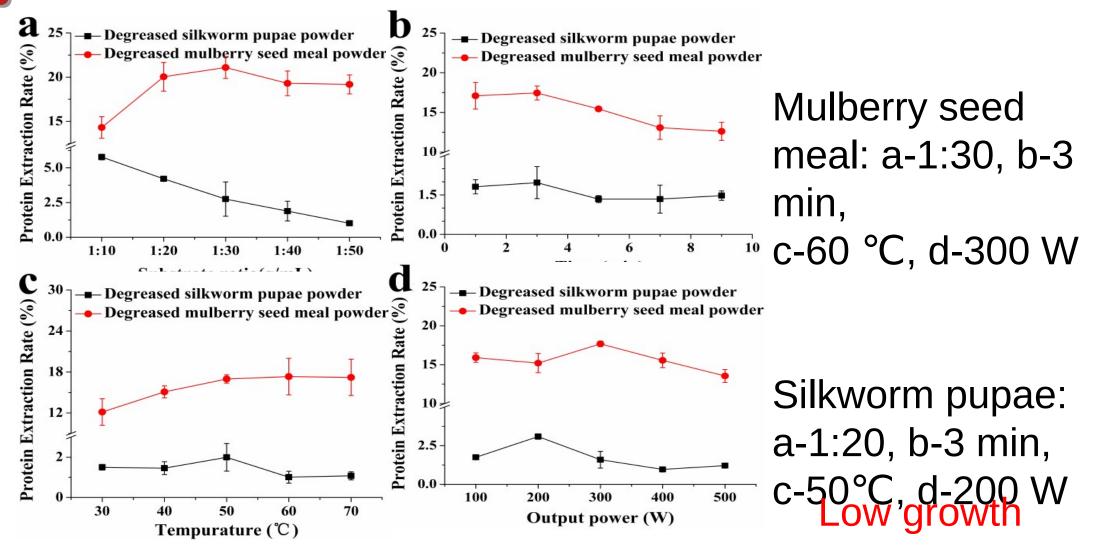
Skin care products



After pretreatment a large amount of protein dissolved in solution Low-cost nitrogen source substitutes for microbial culture

03

Ultrasound Treated


Mulberry seed meal: a-1:40, b-9 min, c-70 °C, d-300 W Up 70%

Silkworm pupae: a-1:30, b-9 min, c-70°C, d-400 W Up 30%

Fig. 1. Effects of different factors on extraction rate of silkworm pupae protein and mulberry seed meal protein by ultrasonic treated. (a) Substrate concentrations; (b) Time; (c) Temperature; (d) Output power.

Microwave Treated

Fig. 2. Effects of different factors on extraction rate of silkworm pupae protein and mulberry seed meal protein by microwave treated. (a. Substrate concentrations; b. Time; c. Temperature; d. Output power).

Response surface optimization

Table 1. Correlation parameters of ultrasonic processing regression model in response suiface fitting

Results

03

Source	df	Mean Square	F Valve	p-value	
Silkworm pupae	14	27.19	15.84	0.001	significant
Lack of fit	10	2.31	4.39	0.0581	Not significant
Mulberry seed peal	14	98.87	11.29	<0.0001	significant
Lack of fit	10	5.11	0.32	0.9418	Not significant
74	s an sing e	stractic			ts of

Fig. 3. Optimization of response surface for ultrasonic treatment of degreased mulberry seed peal

Protein physicochemical properties

Table 2. Effect of ultrasonic and microwave on physicochemical properties of mulberry seed meal protein and silkworm pupae protein

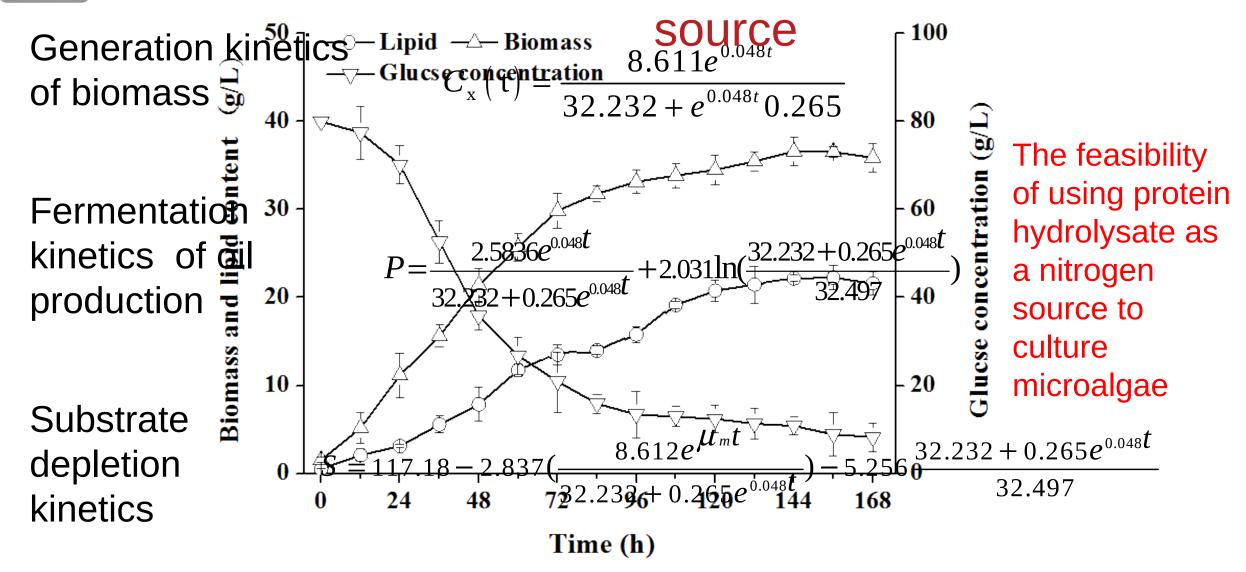
Functional Properties	Mulberry seed meal protein	Protein treated by ultrasonic	Protein treated by microwave	Silkworm pupae protein	Protein treated by ultrasonic	Protein treated by microwave
Content of crude protein (%)	40.7±0.8	-	-	70.7±0.9	-	-
Solubility (%)	25.2±1.31	30.89±2.62	28.33±1.11	4.46±0.23	9.23±1.12	7.93±0.34
Foaming capacity (%)	20.00±4.3	27.63±2.31	22.2±4.0	21.50±1.12	47.38±1.21	42.15±1.12
Foam stability (%)	45.81±8.4	50.31±3.45	48.17±3.3	32.00±1.45	55.19±2.38	52.18±2.32
Emulsibility (m²/g)	83.35±10.8	100.82±2.38	90.0±2.5	79.49±4.87	88.19±4.12	82.34±5.12
Emulsion stability (min)	18.46±1.05	20.03±4.12	18.59±1.2	33.21±1.77	57.11±2.25	41.20±2.23
Holding oil capacity (%)	220.67±13.1	280.67±8.77	234.27±1.0	130.67±13.1	250.67±8.77	234.27±1.01
Water retention (%)	123.12±0.89	151.35±1.23	130.45±2.2	130.07113.1	230.07±0.77	234.27±1.01
				138.12±0.89	180.35±2.12	140.45±3.20

Ultrasound & microwave destroying hydrophobic interactions of protein

Results

03

Resulting in exposure of more hydrophobic groups


pose

UM 41.36±0.30 ^a 13.50±0.25 ^c 39.53±0.28 ^b 6.51±0.43 ^d UM1 31.61±0.45 ^b 18.01±0.28 ^c 40.86±0.63 ^a 9.52±0.31 ^d MM 39.92±0.62 ^a 12.68±0.33 ^b 40.24±0.55 ^a 7.06±0.27 ^c US 52.22±0.24 ^a 11.21±0.47 ^d 25±0.33 ^b 12.12±0.24 ^c US1 49.56±0.32 ^a 17.31±0.25 ^c 25.16±0.42 ^b 8.11±0.23 ^d MS 50.17±0.17 ^a 13.21±0.32 ^c 30.15±0.21 ^b 7.21±0.25 ^d assound change the secondary structure of proteins,	Simple	α-spiral (%)	Random	β-	β-concer (%)
UM1 31.61 ± 0.45^{b} 18.01 ± 0.28^{c} 40.86 ± 0.63^{a} 9.52 ± 0.31^{d} MM 39.92 ± 0.62^{a} 12.68 ± 0.33^{b} 40.24 ± 0.55^{a} 7.06 ± 0.27^{c} US 52.22 ± 0.24^{a} 11.21 ± 0.47^{d} 25 ± 0.33^{b} 12.12 ± 0.24^{c} US1 49.56 ± 0.32^{a} 17.31 ± 0.25^{c} 25.16 ± 0.42^{b} 8.11 ± 0.23^{d} MS 50.17 ± 0.17^{a} 13.21 ± 0.32^{c} 30.15 ± 0.21^{b} 7.21 ± 0.25^{d}					
MM 39.92±0.62ª 12.68±0.33 ^b 40.24±0.55 ^a 7.06±0.27 ^c US 52.22±0.24 ^a 11.21±0.47 ^d 25±0.33 ^b 12.12±0.24 ^c US1 49.56±0.32 ^a 17.31±0.25 ^c 25.16±0.42 ^b 8.11±0.23 ^d MS 50.17±0.17 ^a 13.21±0.32 ^c 30.15±0.21 ^b 7.21±0.25 ^d	UM	41.36±0.30ª	13.50±0.25°	39.53±0.28 ^b	6.51±0.43 ^d
US 52.22±0.24° 11.21±0.47° 25±0.33° 12.12±0.24° US1 49.56±0.32° 17.31±0.25° 25.16±0.42° 8.11±0.23° MS 50.17±0.17° 13.21±0.32° 30.15±0.21° 7.21±0.25°	UM1	31.61±0.45 ^b	18.01±0.28°	40.86±0.63ª	9.52±0.31 ^d
US1 49.56±0.32a 17.31±0.25c 25.16±0.42b 8.11±0.23d MS 50.17 ± 0.17^a 13.21±0.32c 30.15 ± 0.21^b 7.21 ± 0.25^d MS 50.17 ± 0.17^a 13.21 ± 0.32^c 30.15 ± 0.21^b 7.21 ± 0.25^d MS 50.17 ± 0.17^a 13.21 ± 0.32^c 30.15 ± 0.21^b 7.21 ± 0.25^d	ММ	39.92±0.62ª	12.68±0.33 ^b	40.24±0.55ª	7.06±0.27°
MS 50.17±0.17ª 13.21±0.32° 30.15±0.21 ^b 7.21±0.25 ^d Image: Market of the state of the st	US	52.22±0.24ª	11.21±0.47 ^d	25±0.33 ^b	12.12±0.24°
	US1	49.56±0.32ª	17.31±0.25°	25.16±0.42 ^b	8.11±0.23 ^d
	MS	50.17±0.17ª	13.21±0.32°	30.15±0.21 ^b	7.21±0.25 ^d
		.5 - / / / /		rease	

Fig. 4. Raman spectra of protein from seed meal of mulberry (amide1 band and secondary structural sub-peaks).(a) Untreated; (b) Treated by ultrasound; (c) Treated by microwave.

Results

Alternative nitrogen

Results

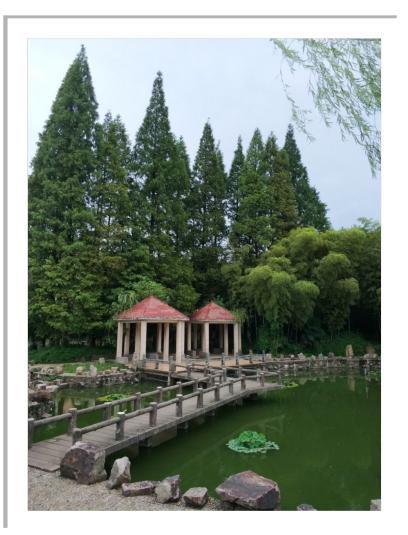
03

Fig. 5. The growth of S. *limacinum* SR21 and its lipid yield during the fermentation with alternative nitrogen source.

Protein modification was achieved by ultrasound and microwave treatment.

The solubility of silkworm pupae protein was more than doubled, and the solubility of mulberry seed protein was increased by 22.58%.

The protein extraction rate of the two protein up to 77% and 28%.


The **degree of proteolysis** after modification increased making the protein easier.

Acknowledgments

Key Research and Development Program (Modern Agriculture) of Zhenjiang City (NY2017010)

- Key Research and Development Program (Modern Agriculture) of Jiangsu Province (BE2017322)
- Six Talent Peaks Project of Jiangsu Province (2015-NY-018)
- Shen Lan Young scholars program of Jiangsu University of Science and Technology (2015)

Thanks for listening